STUDY OF THE P-N BOND IN PHOSPHORIMIDATES BY 15N AND 31P SPECTROSCOPY

Gérard J. MARTIN, Michel SANCHEZ and Marie-Rose MARRE

Chimie Organique Physique - ERA 315 - Université de Nantes - 44072 NANTES Cedex (France) Laboratoire des Hétérocycles du Phosphore et de l'Azote - ERA 926 -Université Paul Sabatier - 31062 TOULOUSE Cedex (France)

The P-N double bond character in phosphorimidates is discussed in terms of ¹JP-N coupling and δ^{15} N or δ^{31} P chemical shifts.

Cyclic phosphazene derivatives have been studied by ^{15}N spectroscopy (1) and the ^{15}N spectra of acyclic compounds containing the P-N bond were reviewed recently (2). In phosphorimidates the tetracoordinated phosphorus atom behaves as an electrophilic center and the nitrogen-phosphorus bond is anticipated to have some double bond character. The reactivity of such compounds was studied recently (3) but no direct spectral data concerning the P-N bond are available. We have investigated the ^{15}N and ^{31}P spectra of a series of derivatives corresponding to the formula (I) :


in

We have shown by a correlation analysis of ^{15}N , ^{31}p and J P-N values determined in amino -P(III) compounds (4) that the steric hindrance of phosphorus substituents and the X-P bond polarizability are important factors which govern the change of NMR parameters. In phosphorimidates I the ^{15}N and ^{31}p chemical shifts and the $^{1}J^{15}N-^{31}P$ coupling constants are affected significantly by the change in hybridization of the P and N atoms induced by the substituents X, Y, Z and R (Table).

The phosphorimidate 15 N atom in I is characterized with chemical shift values ranging from -290 to -340 ppm on the CH₃NO₂ scale (2), which are rather unusual for bicoordinated nitrogen. In fact, these values are observed at a lower frequency than for all other Z=N-X molecules (2), excepted for azides, where the α nitrogen atom is strongly shielded.

$$\begin{array}{ccc} & & & & & \\ & & & & \\ R-\underline{\bar{N}}-\overline{\bar{N}}=\overline{\bar{N}} & & & \\ & & & \\ \end{array} \xrightarrow{} & & & R-\overline{\bar{N}}=N-\overline{\bar{N}}I \end{array}$$

Thus phosphorimidates should be represented by a mesomeric equilibrium $I(A) \longleftrightarrow I(B)$ displaced towards I(A). When R is an electron-accepting group such as C_6H_5 , the extra electronic density of the nitrogen atom is delocalized on the aromatic ring and the ^{15}N chemical shift increases significantly (paramagnetic contribution).

as it appears in the table for compounds 1b, 1d compared to compounds 1a, 1c.

In the same way, the coupling constant ${}^{1}J$ P-N shows drastic changes in the series.The observed values of the ${}^{1}J$ P-N coupling constant are higher for phosphorimidates substituted with N-alkyl groups than they are for O-alkyl derivatives. This behaviour can be compared with the change in ${}^{1}J$ P-N measured in cyclophosphazene Cl₅P₃N₃ (NHAr) (Ib) : the cyclic phosphorous atom exhibits a coupling constant ${}^{1}J$ P-N = 31 Hz when substituted with two chlorine atoms whereas ${}^{1}J$ P=N = 5.8 or 18 Hz for a P(NHAr)₂ or P(Cl, NHAr) fragment respectively.

This fact can be understood in terms of rehybridization of the nitrogen atom, (and, consequently of the phosphorus atom), passing from a pseudo pyramidal arrangement in I(A) for R = C_{2H_5} to a pseudo planar structure in I(B) for R = C_{6H_5} . It should also be noted that in compounds I c, d, e, f the chemical shift of the tricoordinated nitrogen atom does not change very much whereas the coupling constant ^{1}J P-N is significantly affected by the change in angular parameters. Given the above considerations, the values of the ^{1}J P-N coupling constant reported for analogous compounds (<u>6</u>, <u>7</u>, <u>8</u>, <u>9</u> in ref. 5) are surprising. However a spectrum of <u>Ib</u> recorded at 40.56 MHz gives chemical shift and coupling constant values which are consistent with those measured at 25.18 MHz (δ =-304.7 ppm, ^{1}J P-N = 11.0 Hz).

We have also studied a triazo derivative IIe which is a precursor of Ie. The nitrogen atom linked to the phosphorus (1 J P-N = 6 Hz) is strongly deshielded compared to the same atoms in the phosphorimidates I

This assignment is in agreement with data concerning toluene-sulfonylazide (6) and phosphorus azides (7).

The phosphorimidates I were prepared from the reaction of P(III) derivatives on azides using the Staudinger reaction (3).

					N		Р		×		~	2	
COMPOUND	×	~	7	œ	ô ¹⁵ N(a)	1J P-N	6 ¹⁵ N(a) 1, P-N 6 ³¹ P(b)	δ ¹⁵ Ν	1J P-N	6 ^{15N}	1, P-N	6 ¹⁵ N 1J P-N 6 ¹⁵ N 1J P-N 6 ¹⁵ N 1J P-N	1, P-N
	i	Ē		-	ł		-						
e 	CH30	CH30	CH30	C2H5	- 337.9	6. 8	- 1.3	ı	,	•	•	•	•
Р	сн ₃ о	CH30	CH30	C ₆ H5	- 306.3	11.4	- 2.6	١	•	,	1	ı	•
1 C	(CH3)2N	(CH3)2N	(CH3)2N	C 2H5	- 336.85	29.05	21.5	- 360.9	32.7	- 360.0	32.7	- 360.9	32.7
I d	(CH3)2N	(CH3)2N	(CH3)2N	C ₆ H5	- 293.3	24.5	16.6	- 356.2	24.4	- 356.2	24.4	- 356.2	24.4
] e	(CH3) 2N	(CH3)2 ^N	(CH3) ₂ N	tosyl	- 307.85	(c)	25.3	- 357.6	30.2	- 357.6	30.1	- 357.6	30.1
1 6	(CH3)2N	N-сно	€нз-и́ №-енз	CGH5	- 301.0	11.0	19.6	- 359.3	34.8	- 354.1	15.9	- 354.1	15.9
		(CH	(сн2)2										
1 g	снзо	ن (د(دו	(с(сн ₃) ₂)2	C6H5	- 300.55	4.5	5.3	•	1	,	•		•
e II e	(CH3)2N	(CH3) 2N	(CH3)2N (CH3)2N (CH3)2N tosy1	tosyl	- 148.9			- 357.6	29.8	- 357.6	29.8	- 357.6 29.8 - 357.6 29.8 - 357.6	29.8
					- 284.0 (c)	ی د	36.2						
TABLE : 15	N and 31p	parameters	s of phosph	orimida	TABLE : $15N$ and $31P$ parameters of phosphorimidates (1) Y $^{-}$ P = N - R and (11) Y $^{-}$ P - N ₂ - R.	- N = d	R and (II	ч - х - х - (- N3 - R.				

(ABLE : 15N and 31P parameters of phosphorimidates (1) $\ddot{Y} \stackrel{?}{=} P$ = N - R and (11) $\ddot{Y} \stackrel{.}{=} P$ - N₃ - R. Z

. . measured at 25.18 MHz (¹⁵M) using a 15 mm OD ceil (Pulse width PW ≈ 60 10⁻⁶ s, acquisi

The NMR spectra were measured at 25.18 MHz (¹⁵N) using a 15 mm OD cell (Pulse width PW = 60 10⁻⁶ s, acquisition time At = 3.4 s, sweep width SW = 3000 Hz) in the broad band ¹H decoupling mode. 10 to 20% solutions in CHCl3, containing 0.05 M Cr(acac)₃ were used.

The ³¹P spectra were obtained at 36.4 MHz using a 10 mm 00 cell (PW = 8 10⁻⁶s, At = 1.2 s, SW = 4000 Hz) (a) in CHCl3 (b) in toluene (c) not observable

- a) B. THOMAS and G. GROSSMAN
 Z. Anorg. Allg. Chem. 448, 107 (1979) and J. Magn. Res. 36, 333 (1979).
 - b) **B. THOMAS, A. JOHN** and **G. GROSSMAN** Z. Anorg. Allg. Chem. 490, 121, (1982).
- (2) G.J. MARTIN, M.L. MARTIN and J.P. GOUESNARD ¹⁵N-NMR Spectroscopy - NMR, Basic Principles and Progress p. 5, 170 - Vol. 18 Ed. P. Diehl, E. Fluck and R. Kosfeld - Springer Verlag, Heidelberg 1981.
- (3) M.R. MARRE, M. SANCHEZ, J.F. BRAZIER, R. WOLF et J. BELLAN Can. J. Chem., 60, 456 (1981).
- (4) J.P. GOUESNARD, J. DORIE and G.J. MARTIN Can. J. Chem. 58, 1295 (1980).
- (5) G.W. BUCHANAN, F.G. MORIN and R.R. FRASER Can. J. Chem. 58, 2442 (1980).
- (6) C. CASEWIT and J.D. ROBERTS
 J. Amer. Chem. Soc. <u>102</u>, 2364 (1980).
- J. MULLER and J. SCHROEDER
 Z. Anorg. Allg. Chem. <u>450</u>, 149 (1979).

(Received in France 10 August 1983)